Module CCFun

module CCFun: sig .. end

Basic Functions



val (|>) : 'a -> ('a -> 'b) -> 'b
Pipeline. x |> f is the same as f x.
val compose : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
Composition
val compose_binop : ('a -> 'b) -> ('b -> 'b -> 'c) -> 'a -> 'a -> 'c
compose_binop f g is fun x y -> g (f x) (f y) Example (partial order): List.sort (compose_binop fst CCInt.compare) [1, true; 2, false; 1, false]
Since 0.6
val (%>) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
Alias to compose
val (@@) : ('a -> 'b) -> 'a -> 'b
f @@ x is the same as f x, but right-associative.
Since 0.5
val id : 'a -> 'a
Identity function
val const : 'a -> 'b -> 'a
const x y = x for any y
val flip : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c
Flip arguments
val curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c
val uncurry : ('a -> 'b -> 'c) -> 'a * 'b -> 'c
val tap : ('a -> 'b) -> 'a -> 'a
tap f x evaluates f x, discards it, then returns x. Useful in a pipeline, for instance:
CCArray.(1 -- 10)
      |> tap CCArray.shuffle
      |> tap CCArray.sort Pervasives.compare
    

val (%) : ('b -> 'c) -> ('a -> 'b) -> 'a -> 'c
Mathematical composition
val lexicographic : ('a -> 'a -> int) -> ('a -> 'a -> int) -> 'a -> 'a -> int
Lexicographic combination of comparison functions
val finally : h:(unit -> 'b) -> f:(unit -> 'a) -> 'a
finally h f calls f () and returns its result. If it raises, the same exception is raised; in any case, h () is called after f () terminates.
val finally1 : h:(unit -> 'c) -> ('a -> 'b) -> 'a -> 'b
finally1 ~h f x is the same as f x, but after the computation, h () is called whether f x rose an exception or not.
Since 0.16
val finally2 : h:(unit -> 'd) -> ('a -> 'b -> 'c) -> 'a -> 'b -> 'c
finally2 ~h f x y is the same as f x y, but after the computation, h () is called whether f x y rose an exception or not.
Since 0.16
val opaque_identity : 'a -> 'a
opaque_identity x is like x, but prevents Flambda from using x's definition for optimizing it (flambda is an optimization/inlining pass in OCaml >= 4.03).
Since 0.18

Monad

Functions with a fixed domain are monads in their codomain

module Monad (X : sig
type t 
end: sig .. end