module CCKTree:sig
..end
CCKList
, it
is a structural type.type'a
sequence =('a -> unit) -> unit
type'a
gen =unit -> 'a option
type'a
klist =unit -> [ `Cons of 'a * 'a klist | `Nil ]
type'a
printer =Buffer.t -> 'a -> unit
type'a
formatter =Format.formatter -> 'a -> unit
type'a
t =unit -> [ `Nil | `Node of 'a * 'a t list ]
val empty : 'a t
val is_empty : 'a t -> bool
val singleton : 'a -> 'a t
val node : 'a -> 'a t list -> 'a t
val node1 : 'a -> 'a t -> 'a t
val node2 : 'a -> 'a t -> 'a t -> 'a t
val fold : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a
val iter : ('a -> unit) -> 'a t -> unit
val size : 'a t -> int
val height : 'a t -> int
val map : ('a -> 'b) -> 'a t -> 'b t
val (>|=) : 'a t -> ('a -> 'b) -> 'b t
val cut_depth : int -> 'a t -> 'a t
class type['a]
pset =object
..end
val set_of_cmp : ?cmp:('a -> 'a -> int) -> unit -> 'a pset
val dfs : ?pset:'a pset ->
'a t -> [ `Enter of 'a | `Exit of 'a ] klist
val bfs : ?pset:'a pset -> 'a t -> 'a klist
val force : 'a t -> ([ `Nil | `Node of 'a * 'b list ] as 'b)
force t
evaluates t
completely and returns a regular tree
structureval find : ?pset:'a pset -> ('a -> 'b option) -> 'a t -> 'b option
Some _
Example (tree of calls for naive Fibonacci function):
let mk_fib n =
let rec fib' l r i =
if i=n then r else fib' r (l+r) (i+1)
in fib' 1 1 1;;
let rec fib n = match n with
| 0 | 1 -> CCKTree.singleton (`Cst n)
| _ -> CCKTree.node2 (`Plus (mk_fib n)) (fib (n-1)) (fib (n-2));;
let pp_node fmt = function
| `Cst n -> Format.fprintf fmt "%d" n
| `Plus n -> Format.fprintf fmt "%d" n;;
Format.printf "%a@." (CCKTree.print pp_node) (fib 8);;
val print : 'a formatter -> 'a t formatter
module Dot:sig
..end